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Abstract

This work deals with the numerical investigation of the development of a laser molten aluminum pool under the
influence of static magnetic fields with different strengths. Special attention has been paid to laser surface alloying by
means of nickel. It was observed that thermocapillary forces drive two counter-rotating vortices which by themselves
induce two secondary vortices at the free surface. This scenario yields an alloyed layer with an extension of about half
the maximum pool depth. In the presence of a static magnetic field applied perpendicular to the plane of interest, the
system of vortices is suppressed. This damped flow situation in the melt results in a variation of the solute distribution in
the solid and in shallower alloyed layers depending upon the applied magnetic induction. © 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Today, corrosion and wear resistance as well as hard
function layers on metal surfaces are produced by means
of surface remelting, alloying and dispersing processes
applying laser or electron beams as heat sources. Mag-
netofluid dynamics (MFD) might deliver a comp-
lementary process tool to have better control on the
phenomena occurring in this kind of technology. With
its aid processes may be devised to become more efficient
and/or better surfaces can be developed since Lorentz
forces can be applied to influence convection in a more
appropriate way. But of course, the determination of all
essential parameters remains a great challenge. The nu-
merical investigation will give a better insight into the
problem and will allow access today to hardly measur-
able or even non-measurable variables like temperatures
or velocities within the melt. Moreover, parameter
studies can be carried out fast and cheap, once a suitable
numerical model has been developed.

* Corresponding author. Tel.:+49-351-4638092; fax: +49-351-
4638087.
E-mail address: velde@tfd.mw.tu-dresden.de (O. Velde).

Metal surface processing (see Fig. 1) is characterized
by the application of a high density heat source like
electron beam or laser. Since the majority of metals
display a negative surface tension coeflicient, tempera-
ture gradients at the free surface induce a thermocapil-
lary-driven flow (Marangoni flow). It is directed from
hot to cold.

From a modeler’s point of view an electron beam —
similar to the laser — can be represented by a surface
related heat source because the electrons have a very
small penetration depth before they exchange their
kinetic energies with the material of impact [1]. There-
fore, the literature dealing with both types of energy
sources are discussed below.

Pirch et al. [2] have presented a three-dimensional
model for the heat, momentum and solute transport in a
one-step process of laser surface alloying. They have
found an enhancement of solute in a certain depth of the
melt pool dependent on the Marangoni flow pattern and
the diffusion coefficient. Experimental and numerical
investigations [3] of an electron beam surface alloying
process of Ck45 (AISI 1045) with chromium showed the
importance of the convective heat transfer on the melt
pool geometry evolution if — as in the case of steel — the
thermal conductivity is comparably small.
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Nomenclature

Cp specific heat at constant pressure
C solute concentration

D diffusion coefficient

det determinant

e element

f volume force

g earth acceleration

Ahye latent heat

volumetric latent heat

current density

partition coefficient

curvature

length

mass flux

meas geometric measure
pressure

P power

q volumetric heat source

r characteristic radius

t time

T temperature

\4

w

X

SR ™

test function
velocity
, y, z coordinates

Greek symbols

0 dissipation function
electric potential
surface tension
Kronecker symbol
boundary

dynamic viscosity
thermal diffusivity
thermal conductivity
temperature dependency of density
permeability

density

electric conductivity
viscous stress tensor
domain
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Subscripts and superscripts

/s liquid/solid

melt/Sol
melting/solidification

Surf  surface

n,t normal/tangential

R reference

* dimensional

heat source

-~ glectromagre

Fig. 1. Sketch of the physical domain.

So far, no publications concerning MFD accom-
panied surface treatment processes were found. In con-
trast, MFD applications in crystal growth processes are
well reported. Static magnetic fields are used to suppress
unsteady convection which produces inhomogeneity of
the temperature and solute concentration, increasing
thereby the quality of the crystal. A review is given by

Hurle and Series [4]. On the contrary, rotating magnetic
fields can control the convection by inducing fluid flow
in a predefined way, such that an increase of the material
transport can be reached [5,6].

Usually in surface remelting and alloying processes
the surface is scanned by the heat source linearly and the
produced tracks are then overlapped. In the case of long
areas to be processed it is very difficult to handle a ro-
tating magnetic field beneficially. Therefore, in this
paper only a static magnetic field, see Fig. 1, is considered.

The influence of a static magnetic field upon the
crystal growth of GaAs has been analyzed by Walker
and Morthland [7]. They have considered magnetic field
strengths of B*=0.1-10 T in whose presence the ther-
mocapillary convection is confined to a thin layer at the
surface leaving a quiescent inner core. Similar effects are
expected if a static magnetic field is applied to influence
the convection within the melt occurring during a sur-
face alloying process.

2. Problem description

A Cartesian coordinate system is chosen such that its
origin is attached to the center of the heat source. Hence,
the specimen experiences a relative movement with the
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velocity of feeding. A line like heat source is used which
allows two-dimensional calculations neglecting deriva-
tives in the z-direction. Alloyed layers are produced by
conveying the pulverized material by means of a
shielding gas into the melt.

The order of magnitude of the non-dimensional
numbers (see Table 1) leads not necessarily to an a priori
postulation of either laminar or turbulent movement in
the melt pool. Above this, experimental investigations
into these small-scale and high temperature convection
cases are very rarely reported today. In the numerical
investigation the flow is regarded laminar. The neglected
mushy zone — although small in extension — tends to
reduce the flow development since dendrites will grow in
the liquid, which is again a fact that supports the as-
sumption of a laminar regime.

The following assumptions have been made in order
to obtain a realistic but yet feasible description of the
problem:

e Compressibility is expressed by means of the Bous-

e The action of a shielding gas and free surface defor-
mations are neglected.

e The magnetic induction within the melt is homo-
geneous.

e The alloy material reaching the surface is already
molten.

e The solute (nickel) concentration is small enough to
consider the mixture properties as being those of pure
aluminum.

2.1. Governing equations

The governing equations, Eqgs. (1)—(5), describing the
transport mechanism of the processes involved consist of
continuity, Navier—Stokes, energy, and concentration
equations, respectively. Here, all material properties are
assumed to be temperature independent although their
temperature dependency will be taken into account in
the numerical procedure later on.

sinesq approximation. Vow=0, (1)
All material properties are isotropic in both phases. ow 1 Ra
e A net heat flux is used to simulate the laser heating o +(woV)w=-Vp+ R—vzw + eyﬁT +fL, (2)
meaning that reflections and radiation are not con- or | eE e ne
. . . c
sidered separately as well as the cracking of the oxide = +(WoV)T = szT + = &+ q, +H(T), (3)
layer. t e e
e The material is opaque, i.e. the heat source can be oC 1 )
treated surface related. ot +(woV)C= Re Sc Ve )
Table 1
Values of the non-dimensional groups for aluminum
Non-dimensional group Definition Aluminum
Reynolds number Re— RoWRP 2870
n
Prandtl number pr= 0.007
Kp
Rayleigh number ghp 4 . 40
= — (T — Tso)
wn - p(Tsy)
Marangoni number = I_R Q(T‘ ) 4300
nic 0T~ >
Peclet number Po—"R- Ir 20
K
Schmidt number Sc = o 65
Dp
Eckert number wx 22x10°°
Ec=——"7——
(T3, — Tsal)cp
Magnetic Reynolds number Rm = p-0e -wg-Ix 0.006
Hartmann number Ha— \/@ Bo- I (Bo = 27) 160
n
Interaction parameter Ha® 9

Re
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As the current flux must be free of divergence the
equation for the electric potential is:

Voj=0=N[-V*¢p+Vo(wxB). (5)

The term fy, in Eq. (2) represents the Lorentz force in-
duced by an external magnetic field B. This is described
by the following equation:

fr=jxB=N(—Vogp+wxB)xB. (6)
Egs. (1)-(6) as well as the initial and boundary con-

ditions have been non-dimensionalized by means of the
similarity numbers defined in Table 1 and with:

* X 1 X *12
W . D
w=_—s |y =V ops 5
WR R\ PRWR
z z
T — Ts, -
7= Sol - WR :
ATr Ir
£ _f:ZR. _ q"Ir . ._.i*lRBO.
L= 2 - ) ) ’
Wg PrCpATRWR Wg PR
(p* B*
® _

- . B=—
WRB()IR B()

® in Eq. (3) is the dissipation function which can be
neglected compared to the high density heat source that
is represented by ¢, Eq. (7). A complementary reason for
this assumption is the order of magnitude of the coef-
ficient of the dissipation function, Ec/Re ~ 10~°. The
term, q; = Ec/N -, in Eq. (3) represents a volumetric
heat source caused by Joule heating, whereas H(T)
represents the latent heat defined by Eq. (12). Due to this
solution dependent source term the heat transfer Eq. (3)
is an advection diffusion reaction equation in a mathe-
matical sense which is not true for the Egs. (4) and (5)
which are an advection diffusion equation and a
diffusion equation, respectively. The form of the Navier—
Stokes equation (2) considered here is a two-dimen-
sional advection diffusion reaction equation as the
Lorentz force is solution (i.e. velocity) dependent too.

2.2. Initial and boundary conditions

A specimen with the dimensions of 100 x 20 mm is
considered. Its velocity is the feeding velocity in the solid
state as well as at the melting and resolidification fronts,
ie.

W = (ered O O)T

Its initial temperature is that of the environment,

293K — Tyy

T
0 ATk

The heat flux distribution over the surface is described
by a Gaussian-type equation, Eq. (7), where r is the
characteristic radius and P is the source power that ef-

fectively enters the material. The width of a line like
deformed source is d.

N 1 x2
q(x,2) —Pm exp (—ﬁ) (7)
While carrying out the numerical procedure it was found
that heat losses of the specimen into ambience have very
little impact on melt dynamics due to the short interval
(At* = 0.5 s) considered here. Hence, the boundaries of
the specimen can be treated adiabatically, Eq. (8).

VTon=0 (8)

The force balance at the free deformable surface is de-
scribed by the following equation, with Vg, the surface
(i.e. tangential) gradient:

(t —pd)on= (29K — p,)n + Vsury 9)

In the numerical simulation free surface deformations
and shielding gas interaction with the molten surface are
neglected. Therefore, only the tangential part of Eq. (9)
is incorporated in the numerical procedure, i.e. Eq. (15).
The specimen is treated electrically insulated and no
outer electric field is applied. Therefore, the surface of
the specimen experiences a von Neumann boundary
condition, Eq. (10):

Voon=(wxB)on (10)

Throughout this work the magnetic field will be treated
as homogeneous. Hence, a magnetic induction,
B=(0 0 1), is applied.

To produce a low alloyed layer a mass flux of nickel
(pni(Tsol) = 7900 kg/m?) over the molten surface ac-
cording to Table 3 is applied. A species flux balance at
the resolidification front in the normal direction yields
with wg the solidification speed, Eq. (11):

1
C1Wsol(k—1):—mvclol‘l (11)

The basic non-dimensional numbers characterizing the
fluid flow problem are the Reynolds number (ratio of
inertial and viscous forces), the Prandtl number (ratio of
viscosity and conductivity of a fluid), the Rayleigh
number (ratio of buoyant and viscous forces), the Ma-
rangoni number (ratio of thermocapillary and viscous
forces), the Peclet number (ratio of characteristic pool
length and heat penetration depth) and the Schmidt
number (ratio of viscosity and mass diffusivity). The
definitions are listed in Table 1.

Hereby, wg is a characteristic velocity, i.e. the max-
imum velocity at the surface. Based on experimental
observations the characteristic melt pool dimension is
about /g = 1 mm. The maximum speed at the surface of
the melt puddle is of the order of 1 m/s, see [2,3]. The
material properties reported in Table 2 are fixed for a
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Table 2
Material properties of aluminum

Property of aluminum

Reference

2(T) = 0.914 N/m — 0.35 x 107°N/m K(T — Tiy)

16500 J 1
( fmo }Pa S

_ —3
n(T) = 0149210 exP{ 83144 J/mol K) - T

2(T) =197 W/m K — 6.39 x 10 W/m K>(T — Tsy)
(T) =94 W/m K +0.333 x 107> W/m K*(T — Ty
u=1

p(Tsor) = 2380 kg/m’?

A=-0.35kg/m’ K

Ges = 3.5% 107 1/Om

6g = 5.0 x 10° 1/Qm

Cps = 945 J/kg K5 Aoy = 355.9 x 10° J/kg

¢ =858 J/kg K

Tso =933 K

Iida and Guthrie [16]
Brandes [18]

Touloukian [19]
Brandes [18]

Moreau [8]

lida and Guthrie [16]
lida and Guthrie [16]
DUBBEL [20]
Moreau [§]
DUBBEL [20]

lida and Guthrie [16]
lida and Guthrie [16]

temperature of 7% = 1200 K. The Marangoni number is
more appropriate than the Reynolds number for surface
tension driven flows. For the Marangoni number cal-
culation a temperature difference of 500 K has been
applied.

In terms of MFD the basic non-dimensional numbers
read as follows: magnetic Reynolds number (ratio of
induced and applied magnetic field strength), Hartmann
number (ratio of electromagnetic volume forces and
viscous forces) and interaction parameter (ratio of
electromagnetic volume forces and inertial forces).
These parameters have been calculated with a magnetic
induction of By = 2 T, a value that can be reached with
electromagnets in a laboratory scale.

All material properties concerned here and in the
numerical program were those of aluminum 99.99%.
The temperature-dependent material properties are
listed in Table 2. Since phase transformations take place,
material properties change not always continuously with
temperature. These discontinuities occur at the Curie
point or at liquidus.

Buoyancy is dominated by thermocapillarity in these
kinds of problems as two orders of magnitudes lie be-
tween Marangoni and Rayleigh numbers. Therefore, the
influence of the latter has been neglected and the
buoyancy term was not incorporated in the numerical
procedure.

Since Rm < 1 convection has a negligible influence
on the magnetic field because the magnetic field
strength — induced by the fluid motion — is small com-
pared to the applied magnetic field strength, see Moreau
[8]. Hence, a homogeneous and steady magnetic flux, B,
is considered in this work. An interaction parameter of
ca. 10 (Table 1) means that the convection can be
influenced considerably by an external magnetic field.

A crucial point in calculating melting and resolidi-
fying problems is the treatment of the phase transition

front. This has been done by employing an effective
viscosity distribution. Beneath the melting temperature
the viscosity has values which are six orders of magni-
tudes higher than the real liquid values. Above liquidus
the temperature dependency of viscosity according to
Table 2 is considered.

It was found that the application of an effective
specific heat approach for the latent heat of fusion is
very grid and time step dependent. Hereby the specific
heat is calculated from an enthalpy temperature curve.
In contrast, the latent heat is modeled as a sink and
source, respectively, in Eq. (3). For a given two-dimen-
sional element passed by the isotherm of solidification,
the latent heat release is given by Eq. (12),

A

2
From this equation the condition raises that the local
solidification front, having a local length b, see Fig. 2,
may not travel far beyond the element border. Math-
ematically, this is expressed by, ws, - At < meas(e),
which sets limitations for both the time step as well as
for the grid generation.

As the solute is rejected at the solidification front
with a certain ratio, C; =k (), see e.g. Kurz and
Fischer [9], an appropriate flux condition has to be in-
corporated in the numerical procedure. Therefore, for
each element accommodating the solidification front the
following procedure is applied, Fig. 3. The mass con-
servation of solute is expressed by Eq. (13),

/C"ld(n)dn:/C“eW(n)dn (13)
and by the condition of a constant derivative of the
solute concentration in the tangential direction. This
together with the above-mentioned ratio C;/C; yields a
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TSoI

Fig. 2. Elementwise isotherm of solidification.

Fig. 3. Concentration distribution in an element.

new concentration distribution within an element.
Obviously, this results in a pile up of solute right before
solidification. The superscripts, old and new, in Eq. (13)
describe the solute concentration before and after the
application of the flux condition.

Apparently, the local parameter (Re:-Sc= wsq-
An/D) is crucial because of the small order of magnitude
(~ 5 x 1072 m?/s, see [16]) of liquid diffusivity in metals.
Hence, Eq. (4) is much more dominated by convection
than all the other conservation equations. To reach a
convergent solution of the solute transport Eq. (4) a ten
times higher mass diffusivity, D =5 x 10-® m?/s, was

used in the calculations as done by Pirch [17]. When
using a factor of 15, he showed that the maximal solute
concentration at the resolidification front decreases by
about 6%, whereas the location (i.e. the distance from
the surface) of this value increases by about 20%. These
deviations, however, will not affect the main purpose of
this work. A further grid refinement would have led to
convergence even with the actual mass diffusivity but
would have increased the necessary CPU time consid-
erably.

In general, the temperature dependent properties
(Table 2) were treated as being constant within an
element. This approach turned out to be realistic as long
as the grid has been fine enough in regions with high
temperature gradients.

3. Numerical procedure and its implementation

The incorporation of boundary conditions in a finite
element formulation (or more precise in a variational
formulation) reveals the flexibility of the finite element
method (FEM). To prove this, the variational formu-
lation of the steady version of the Navier—Stokes equa-
tions (2), is discussed in detail. Multiplying the stress
tensor term by the test function, v, and integrating
the result partially, yields the following boundary inte-
gral:

/Vorode:f/rZ(Vv)TdQ+/norovdF.
o Q

r

(14)

Here, the viscous stress tensor is defined by
1=v(Vw+ (Vw)"). For a mathematically detailed
definition of functions and function spaces the reader is
referred to Carey and Oden [10]. Now, it is possible to
use the boundary integrals to formulate boundary con-
ditions in a natural way. Using the tangential part of Eq.
(9) under the assumption of neglected curvature the
Marangoni boundary condition along the boundary I’
is:

7, = —Vsury = ((noton)n—nor7) (15)

and by this variational formulation of the momentum
equation finally reads:

JoWoV)WwovdQ = — [, VpovdQ— [,7(Vv) dQ
+ [r(motomndl'+ [, Vyondl + [,fovdQ.
(16)

This controls, that also the Marangoni boundary con-
dition along the boundary I' is included in the varia-
tional formulation. In Eq. (16), f stands for any kind of
volume force.

The Marangoni boundary condition was im-
plemented in the finite element code ParalleINS, a public
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domain research code of the Dresden University of
Technology and the University of Gottingen. This code
was originally developed for testing a non-overlapping
domain decomposition method, see Auge et al. [11],
Lube et al. [12]. It works with a stabilized FEM because
standard methods are not suitable for calculating con-
vection dominated flows. The method is called Galerkin-
least-squares FEM and includes stabilization to over-
come problems resulting from convection and velocity
pressure coupling, Hughes et al. [13,14]. The basic con-
cept of the least-squares FEM can be used for a wide
range of applications, [15]. Linear test function and tri-
angular elements are used in the model exclusively.

As all equations are solved in the whole computa-
tional domain, some means to save CPU time are ap-
plied for solving the Navier—Stokes-equations (2). The
velocity vector is known a priori throughout the calcu-
lations if temperatures are below liquidus. In those re-
gions the coefficients of the stiffness matrix along with
the solution vector obtain suitable values.

4. Results
4.1. Laser alloying without a magnetic field

The thermal boundary conditions have been chosen
to allow the development of a melt pool with a perimeter
of about 3 mm. Therefore, a net heat flux according to
Table 3 is applied. In terms of the thickness of the al-
loyed layer a quasi-steady status is reached after t = 250,

Table 3

Applied boundary conditions
Variable Annotation
P =2.0kW According to Eq. (7)
d* =10.0 mm According to Eq. (7)

r*=0.4 mm
m* = 0.225 kg/m?s
Wieq = 0.01 m/s

According to Eq. (7)

20

2757

see Fig. 9. Hence, the process time to be investigated
was, t = 500, which refers to * = 0.5s. Due to this rel-
atively short time, all solid body boundary conditions
could be realistically described as adiabatic, at least
till r =450 (Fig. 4). A constant feeding velocity,
Wreed = 0.01, was prescribed.

The development of the melt pool geometry is regular
since the enthalpy transport within the melt is almost
entirely diffusive. This is caused by the high thermal
diffusivity of aluminum. The melt puddle shows a nearly
symmetric shape around an axis which moves with the
feeding velocity away from its initial position at the laser
axis, Fig. 4. Even at locations where high velocities
prevail, convective heat transfer has only very little in-
fluence on the evolution of the solidification front.

When the process approaches the quasi-steady-state
an alloyed layer can move considerably beyond the
solidification front. Otherwise the local solidification
velocity exceeds the feeding velocity to such an extent
that the solute is trapped within the melt.

The flow field is determined by two counter-rotating
primary vortices right below the surface. They are in-
duced by thermocapillary forces. After a certain time
(t ~70) these Marangoni vortices start to induce sec-
ondary vortices beneath, of course again counter-rotat-
ing. The vortex pattern in the form of stream traces is
displayed in Fig. 5, showing the four vortices in the melt.
Most of the particles moving through the liquid re-
solidify close to the surface of the specimen. This feature
is also highlighted by the concentration distribution in
the processed material. As the process carries on above
the point of quasi-steadiness the secondary vortices
grow and the downstream vortex eventually becomes
dominant, Figs. 6 and 7. At ¢ = 300, a maximum speed
at the free surface of w,, = 1.05 is reached.

The solute is almost entirely transported by convec-
tion. Therefore, the behavior of the Marangoni vortex at
the solidification front will lead to the frozen solute
distribution, see Figs. 8 and 9. The solution of Eq. (4)
visualizes the current flow situation due to the convec-
tion dominance.

= 13008

00/3

197 —{t=900/3]_
\—’_/

t=1500/3

10

X

T 2

Fig. 4. Solidification isotherm development with time.
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Fig. 5. Stream traces at t* = 0.1 s.
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Fig. 6. Stream traces at r* = 0.3 s.
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Fig. 7. Stream traces at t* = 0.5 s.

4.2. Laser alloying with a magnetic field

In the numerical program five different values of the
magnetic induction were considered which are
B*=10.25, 0.5, 0.75, 1.0, and 2.0 T.

B* =0.5 T: The pool geometry is enlarged and the
secondary vortices are almost entirely suppressed by the
Lorentz forces, compare Figs. 7 and 10. The solute
distribution within the alloyed layer has changed con-
siderably although the depth of this layer is hardly
altered, see Fig. 8, Figs. 11 and 17.

B* =0.75 T: The melt pool geometry is again en-
larged and the secondary vortices are totally vanished,

see Fig. 12. The downstream Marangoni vortex is
widened but its momentum is lowered such that the
mass transport is less intense and the solute density in
the solid is decreased, Fig. 17.

B* =2.0 T: The results of this case are discussed in
greater detail because here the highest magnetic field
strength in the present work was considered. Joule
heating has remarkable influence on the pool geometry
development, compare Figs. 4 and 13. Especially at the
resolidification front it leads to an enlargement of the
melt pool.

Since Lorentz forces are directed against their causes,
the flow is decelerated and stratified perpendicular to the
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Fig. 9. Solute concentration in the solid at * = 0.5 s.
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Fig. 10. Stream trace at t* = 0.5 s,B* =05 T.
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Fig. 11. Solute concentration at t* = 0.5 s,B* = 0.5 T.
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19
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Fig. 12. Stream trace at t* = 0.5 s,B* =0.75 T.
20
t=100/3
t=300/3
>| t=500/3
o t=700/3] [1=900/3
\Y_// t=1500/3

0

X

T 2

Fig. 13. Solidification isotherm development with time, B* =2 T.

direction of feed, Fig. 14. The Lorentz forces let the
secondary eddies totally vanish and also suppress the
Marangoni vortices. The maximum speed at the surface
does not exceed the value of wy,, = 0.85. At the heated
surface close to resolidification front the tangential
temperature gradients are not high enough to induce
velocities higher than wy,x = 0.6. This yields a momen-
tum that is not strong enough to overcome the Lorentz
forces to such an extent that a vortex can be established,
Fig. 14. Therefore, the mass transfer into deeper regions
of the melt is decreased and a very shallow alloyed layer
is obtained, Fig. 15.

The electric potential within the melt has values
between ¢ = 0.0 and 0.2 mV, qualitatively shown in

Fig. 16. The sharp changes in the isolines of the electric
potential at the melt isotherm are due to the temperature
dependency of the electrical conductivity of aluminum.

Drawing the solute distribution of all investigated
cases at a certain location, x = 2.6, into one diagram
illustrates best the potential being in this MFD appli-
cation, Fig. 17.

5. Conclusion
The calculations of the melt pool development in a

strictly transient framework revealed the convection
dominated nature of the solute transport in this kind of

207 T

/

P

0

X

T 2

Fig. 14. Stream traces at t* = 0.5 s,B* =2 T.
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20

2761

2

X

3 4

Fig. 15. Solute concentration at t* = 0.5 s,B* =2 T.

0

X

-
N

Fig. 16. Electric potential at t* =0.5s,B* =2 T.

surface flow problem. After an initial startup the final
pool geometry will establish and the flow structure leads
to a solute distribution in the solid. Beyond this stage,
the solute concentration in the solid approaches some
constant state with an alloyed layer of almost half the
pool depth, Fig. 9.

20

191

C/mass%

Fig. 17. Solute concentration distribution (mass%) at x = 2.6.

It could be shown that Marangoni vortices at the free
surface induce counter-rotating secondary vortices right
beneath. The primary vortices are fast turning and flat.
Portions of the primary and secondary vortices will be
suppressed with increasing magnetic induction and the
latter will entirely vanish if the magnetic field strength is
higher than B* = 0.5 T.

A static magnetic field applied to add damping vol-
ume forces, i.e. Lorentz forces, can calm the flow by
suppressing vortices and lowering the velocities at the
free surface. Therefore, the mixing of the solute will be
of course less intense and the depth of the alloyed layer
will be smaller.

Thinking of the utilization of magnetic fields in an
industrial process the applied magnetic induction would
be certainly smaller than the maximum considered in the
numerical analysis. This will decrease the alloying depth
lesser. Since the proposed magnetic induction for influ-
encing the alloying of aluminum surfaces is smaller than
2.0 T, comparable cheap electromagnets — certainly
water-cooled — can be used in an industrial process.

The external magnetic field stabilizes the free surface
avoiding therefore, the splashing of the molten material.
This allows the application of laser beams with higher
power, higher feeding velocities and hence higher
throughput rates. The suppressed splashing would also
allow the alloying of material which has a melting point
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much higher than that of aluminum. Combining mag-
netic induction, beam power and rate of feed reasonably
will result in higher productivity and certainly in deeper
alloyed layers.

Apparently, the extreme of the investigated cases
(B*=2.0T) does not yield alloyed layers which are
desirable from a manufacturer’s point of view. Anyway,
this has not been the major intention of this paper. The
purpose was more to show the possibilities lying in the
application of MFD to surface treatment technologies.
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